
Class-Based Time Series Data Augmentation to
Mitigate Extreme Class Imbalance for Solar Flare

Prediction

Junzhi Wen⋆[0000−0002−9176−5273] and Rafal A. Angryk[0000−0001−9598−8207]

Department of Computer Science
Georgia State University
Atlanta, GA 30302, USA

jwen6@student.gsu.edu,angryk@cs.gsu.edu

Abstract. Time series data plays a crucial role across various domains,
making it valuable for decision-making and predictive modeling. Ma-
chine learning (ML) and deep learning (DL) have shown promise in this
regard, yet their performance hinges on data quality and quantity, of-
ten constrained by data scarcity and class imbalance, particularly for rare
events like solar flares. Data augmentation techniques offer a potential so-
lution to address these challenges, yet their effectiveness on multivariate
time series datasets remains underexplored. In this study, we propose a
novel data augmentation method for time series data named Mean Gaus-
sian Noise (MGN). We investigate the performance of MGN compared to
eight existing basic data augmentation methods on a multivariate time
series dataset for solar flare prediction, SWAN-SF, using a ML algo-
rithm for time series data, TimeSeriesSVC. The results demonstrate the
efficacy of MGN and highlight its potential for improving classification
performance in scenarios with extremely imbalanced data. Our time com-
plexity analysis shows that MGN also has a competitive computational
cost compared to the investigated alternative methods.

Keywords: Data Augmentation · Data Imbalance · Machine Learning
· Multivariate Time Series · Neural Networks · Solar Flare Prediction ·
SWAN-SF Dataset · Time Series Classification

1 Introduction

Time series data, characterized by a sequence of observations recorded over time
intervals, has been permeating numerous domains such as finance [19], healthcare
[8], climate science [13], and industrial processes [12]. Time series classification,
the task of categorizing time series data instances into distinct categories, is
of paramount importance as it facilitates decision-making, anomaly detection,
and predictions across diverse applications. Multiple applications of machine

⋆ Corresponding author: Junzhi Wen
jwen6@student.gsu.edu

ar
X

iv
:2

40
5.

20
59

0v
1 

 [
cs

.L
G

] 
 3

1 
M

ay
 2

02
4

songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang

songyongliang


songyongliang


songyongliang




2 Junzhi Wen and Rafal A. Angryk

learning (ML) have been build and deployed in these areas over recent years.
However, the performance of ML models depends on the quality and quantity
of the data available, which are often limited in real-world scenarios. Especially
for rare events such as solar flares, hurricanes, and earthquakes, the data is not
only scarce but also characterized by extreme imbalances. Class imbalance [3]
is one of the major challenges for machine learning-based classification tasks,
since when the data is extremely imbalanced, it will often introduce bias toward
the majority classes, yielding unsatisfactory performance of the classifications
for the extremely infrequent (but often more valuable) events.

Data augmentation as a tool to enhance size of training data for ML purposes
has been growing in popularity in recent years and has shown its effectiveness
in many applications, such as image classifications [15] and natural language
processing (NLP) [16]. In this study, we introduce a novel data augmentation
approach named Mean Gaussian Noise (MGN), which deviates from existing
methods by synthesizing the underrepresented class globally. To evaluate MGN,
we compare it with eight established basic data augmentation methods that have
been studied in [10]. While [10] has primarily used univariate time series data,
our investigation focuses on multivariate time series data, specifically targeting
solar flare prediction using SWAN-SF [2]. We conduct an experiment to compare
the performance of these methods on a classification task using a ML algorithm
for time series data. Moreover, we analyze the time complexity of those methods
in practical settings.

The rest of the paper is organized as follows: Section 2 summarizes the basic
augmentation methods for time series data and the MVTS dataset used in this
study. Section 3 provides an detailed introduction to the Mean Gaussian Noise
(MGN) method. Experiment setup details are presented in Section 4, followed
by a discussion of results in Section 5. Section 6 experimentally demonstrates
the time complexity of different methods in practice. Finally, conclusions and
avenues for future research are presented in Section 7.

2 Background

2.1 Basic Data Augmentation Methods for Time Series Data

Most of the basic time series data augmentation methods are based on random
transformations of training data and some of them are borrowed from image data
augmentation. Given a MVTS data instance T = {t1, . . . , ti, . . . , tn} ∈ Rn×D,
where n ∈ N is the length of time series (i.e., number of time steps) and D ∈ N
is the number of variate, a synthetic data instance T ′ will be generated through
a transformation function. Authors in [10] further divide those methods into
three domains, the magnitude domain, time domain, and frequency domain. In
this section, we give a description of eight different methods that we use in this
study for multivariate time series (MVTS) data and their related works and an
example of each method on SWAN-SF with five variables is shown in Fig. 1.



Title Suppressed Due to Excessive Length 3

0 20 40 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12
TOTUSJH

0 20 40 60
0.14

0.16

0.18

0.20

TOTBSQ

0 20 40 60

0.940

0.939

0.938

0.937
TOTPOT

0 20 40 60
0.36

0.34

0.32

0.30

0.28

0.26
TOTUSJZ

0 20 40 60
0.925

0.900

0.875

0.850

0.825

0.800

0.775
ABSNJZH

Original

0 20 40 60

0.00

0.05

0.10

0.15

TOTUSJH

0 20 40 60

0.10

0.15

0.20

0.25
TOTBSQ

0 20 40 60

1.00

0.98

0.96

0.94

0.92

0.90

0.88
TOTPOT

0 20 40 60

0.40

0.35

0.30

0.25

TOTUSJZ

0 20 40 60
0.95

0.90

0.85

0.80

0.75

ABSNJZH
Jittering

0 20 40 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12
TOTUSJH

0 20 40 60
0.14

0.16

0.18

0.20

TOTBSQ

0 20 40 60

1.026

1.025

1.024

1.023

TOTPOT

0 20 40 60

0.32

0.30

0.28

0.26

0.24
TOTUSJZ

0 20 40 60

0.900

0.875

0.850

0.825

0.800

0.775

ABSNJZH
Scaling

0 20 40 60
0.12

0.10

0.08

0.06

0.04

0.02

0.00
TOTUSJH

0 20 40 60
0.14

0.16

0.18

0.20

TOTBSQ

0 20 40 60

0.940

0.939

0.938

0.937
TOTPOT

0 20 40 60
0.36

0.34

0.32

0.30

0.28

0.26
TOTUSJZ

0 20 40 60
0.925

0.900

0.875

0.850

0.825

0.800

0.775
ABSNJZH

Random Flipping

0 20 40 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12
TOTUSJH

0 20 40 60
0.14

0.16

0.18

0.20

TOTBSQ

0 20 40 60

0.940

0.939

0.938

0.937
TOTPOT

0 20 40 60
0.36

0.34

0.32

0.30

0.28

0.26
TOTUSJZ

0 20 40 60
0.925

0.900

0.875

0.850

0.825

0.800

0.775
ABSNJZH

Permutation

0 20 40 60
0.00
0.02
0.04
0.06
0.08
0.10
0.12

TOTUSJH

0 20 40 600.100

0.125

0.150

0.175

0.200

0.225

0.250
TOTBSQ

0 20 40 60
1.15

1.10

1.05

1.00

0.95

0.90

0.85
TOTPOT

0 20 40 60

0.32

0.30

0.28

0.26

TOTUSJZ

0 20 40 60

1.0

0.8

0.6

ABSNJZH
Magnitude Warping

0 20 40 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12
TOTUSJH

0 20 40 60
0.14

0.16

0.18

0.20

TOTBSQ

0 20 40 60

0.940

0.939

0.938

0.937
TOTPOT

0 20 40 60
0.34

0.32

0.30

0.28

0.26
TOTUSJZ

0 20 40 60
0.925

0.900

0.875

0.850

0.825

0.800

0.775
ABSNJZH

Time Warping

0 20 40 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12
TOTUSJH

0 20 40 60
0.14

0.16

0.18

0.20

TOTBSQ

0 20 40 60

0.940

0.939

0.938

TOTPOT

0 20 40 60
0.36

0.34

0.32

0.30

0.28

0.26
TOTUSJZ

0 20 40 60
0.925

0.900

0.875

0.850

0.825

0.800

ABSNJZH
Window Slicing

0 20 40 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12
TOTUSJH

0 20 40 60
0.14

0.16

0.18

0.20

TOTBSQ

0 20 40 60

0.940

0.939

0.938

0.937
TOTPOT

0 20 40 60
0.36

0.34

0.32

0.30

0.28

0.26
TOTUSJZ

0 20 40 60
0.925

0.900

0.875

0.850

0.825

0.800

0.775
ABSNJZH

Window Warping

Fig. 1. Examples of eight different basic data augmentation methods on a single MVTS
data instance from the flaring class of SWAN-SF with five common features recom-
mended in [5].



4 Junzhi Wen and Rafal A. Angryk

Jittering is the act of adding random noise to the values at each time step. It
can be mathematically expressed as:

T ′ = {t1 + ϵ1, . . . , ti + ϵi, . . . , tn + ϵn}, (1)

where ti is a vector containing the values at time step i, and ϵi is a vector of
random noises generated from Gaussian distribution ϵ ∼ N (0, σ2) with σ being
a hyperparameter that needs to be pre-determined. Jittering has been used for
mitigating drift in time series data [7].

Scaling for time series refers to transforming the magnitude of the time se-
ries by multiplying the values at each time step from a random scaling factor.
Mathematically, scaling can be expressed as:.

T ′ = {γ · t1, . . . , γ · ti, . . . , γ · tn}, (2)

where γ is a vector of scaling factors generated from a Gaussian distribution
γ ∼ N (1, σ2) with σ a pre-determined hyperparameter. [20] used scaling to help
with sensor data for Parkinson’s disease monitoring. [18] employed scaling as
data augmentation for gait recognition.

Rotation in the context of multivariate time series involves randomly flipping
and shuffling features to simulate rotational transformations. Mathematically,
this can be expressed as:

T ′ = {R · t1, . . . , R · ti, . . . , R · tn}, (3)

where R is a vector of random rotation angles, each element generated from a
uniform distribution, R ∼ U(−1, ,1). While some studies like [20] have observed
improvements in accuracy when rotation is used, particularly when combined
with other data augmentation techniques, due to the challenge of interpreting
the shuffling of time series across different features, our study opts for a simpler
approach termed “random flipping", where we flip the time series of randomly
selected features only.

Magnitude Warping changes the magnitude of T by convolving the data win-
dow with a smooth curve varying around one [20]. Mathematically, magnitude
warping can be defined as:

T ′ = {γ1 · t1, . . . , γi · ti, . . . , γn · tn}, (4)

where {γ1, . . . , γi, . . . , γn} is a matrix generated by interpolation of a cubic spline
S(x) with knots x ∈ Rk being generated from a Gaussian distribution N (1, σ2).
The number of knots k and the standard deviation σ are the hyperparameters
to be pre-determined.

Slicing is the idea of cutting off a window of size W from the original time
series. Mathematically, slicing can be defined as:

T ′ = {tφ, . . . , ti, . . . , tW+φ}, (5)

where φ is an integer that is randomly selected such that 1 ≤ φ ≤ n−W . In this
way, slicing is equivalent to the operation named Window Slicing (WS) in [11].



Title Suppressed Due to Excessive Length 5

Permutation involves rearranging segments of a time series to generate novel
patterns [20]. This method can be applied by either equally sized segments or
segments of variable sizes. Permutation with equally sized segments will split
the time series into N segments with a length of T

N and then permutes them,
while permutation with variable sized of segments will split the time series into
random sizes. Moreover, permutation does not maintain the time dependencies
present in the original time series.

Time Warping refers to the manipulation of temporal patterns, achieved either
through a smooth warping path [20] or a randomly positioned fixed window [11].
In the context of a smooth warping path, time warping can be mathematically
expressed as:

T ′ = {tτ(1), . . . , tτ(i), . . . , tτ(n)}, (6)

where τ(·) represents a warping function. This function adjusts the time steps
based on a smooth curve defined by a cubic spline S(x) with each knot xi of
knots x ∈ Rk sampled from a normal distribution N (1, σ2).

Window Warping is a variant of time warping proposed in [11]. It offers a
distinct method for manipulating temporal patterns within a time series. This
technique involves selecting a random window from the time series and altering
its duration by either stretching it twofold or contracting it by half. Although
initially set at fixed values of 1

2 and 2, the authors highlight the adaptability of
these multipliers, indicating they can be customized or fine-tuned to alternative
values depending on the desired outcome or application.

2.2 SWAN-SF Dataset

Space Weather ANalytics for Solar Flares (SWAN-SF) is a multivariate time
series (MVTS) dataset for benchmarking solar flare prediction introduced in [2].
The dataset covers 4,098 MVTS data collections of over eight years of solar
activities from Solar Cycle 24. Each MVTS data instance represents a 12-hour
observation window of 51 flare-predictive parameters. Within the observation
window, each time series is collected with the full 12-minute dance of the Solar
Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) defini-
tive vector magnetogram data, resulting in 5 values per hour. Consequently, each
observation-window time series for each active region comprises 60 data values.
An MVTS data instance is labeled by the class of the strongest flare reported
within a 24-hour prediction window right after the observation window (namely,
with zero latency). Based on the peak soft X-ray flux observed by the X-ray sen-
sor onboard the Geostationary Operational Environmental Satellite (GOES),
solar flares can be categorized into five classes denoted by letters A, B, C, M,
and X, from weakest to the strongest. In SWAN-SF, instances with no-flares or
only A-class flares in the prediction window are labeled by N.

The SWAN-SF dataset is created through a sliding-window methodology
with a 1-hour step size, leading to temporal coherence issues that can introduce



6 Junzhi Wen and Rafal A. Angryk

Table 1. Sample sizes and imbalance ratios in each partition in SWAN-SF. The time
spans between two adjacent partitions are not overlapping.

Partition Time Span Class Distribution Imbalance Ratio
X M C B N (MX:NBC)

1 05/2010 – 03/2012 165 1,089 6,416 5,692 60,130 1:58
2 03/2012 – 10/2013 72 1,392 8,810 4,978 73,368 1:62
3 10/2013 – 03/2014 136 1,288 5,639 685 34,762 1:29
4 03/2014 – 03/2015 153 1,012 5,956 846 43,294 1:43
5 03/2015 – 08/2018 19 971 5,753 5,924 62,688 1:75

bias and overfitting during model training [1]. To address this, SWAN-SF is di-
vided into five partitions without temporal overlapping with each partition con-
taining approximately equal number of M- and X-class instances. Additionally,
SWAN-SF is highly imbalanced where M- and X-class instances are extremely
less than the instances of the remaining three classes. Tab. 1 shows the num-
ber of instances for each class and the imbalance ratio in each partition. Thus,
SWAN-SF serves as a pertinent dataset for studying rare-event prediction, char-
acterized by limited data availability and class imbalance, making it well-suited
for this study.

3 Mean Gaussian Noise for Multivariate and
Underrepresented Time Series Data

In this section, we introduce the novel data augmentation technique called Mean
Gaussian Noise (MGN), which diverges from conventional augmentation tech-
niques discussed in Section 2.1. While traditional methods focus on generating
new/synthetic data through manipulating individual time series data instances
within a dataset, MGN takes a global approach by generating synthetic data
using the statistical characteristics of the entire input dataset (i.e., the class to
be augmented). This class-based method aims to improve the representation of
central tendency/trend of the underrepresented classes in the input space, while
maintaining the original seperation of classes at their boarders. The difference
between traditional sample-based augmentation methods (e.g., jittering) and our
class-based method (i.e., MGN) is illustrated in Fig. 2.

The fundamental concept behind MGN is to introduce Gaussian noise cen-
tered around the mean values of the input multivariate time series dataset. By
capturing the overall statistical tendencies of the data, MGN aims to create in-
stances that reflect the underlying distribution of the underrepresented data.
This global perspective allows MGN to generate samples that are representative
of the rare class as a whole, rather than being limited to specific instances.

Initially, MGN computes the mean values along each feature at each time
step for the whole population of the input dataset, effectively summarizing the
central tendencies of the data across different features and time steps. These
mean values serve as reference points for the generation of synthetic instances.
Subsequently, random Gaussian noise is added to each mean value at every time



Title Suppressed Due to Excessive Length 7

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e 

2

(a) Sample-based Method
Original
Synthetic

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e 

2

(b) Class-based Method
Original
Synthetic

Fig. 2. The difference in data generation between sample-based methods and class-
based methods demonstrated using randomly generated 2D data. The synthetic data
in (a) is generated by jittering and the synthetic data in (b) is generated by MGN.

step, introducing variability while preserving the overall structure of the class.
Formally, MGN can be expressed as:

T ′ = {t̄1 · (1+ ϵ1), . . . , t̄i · (1+ ϵi), . . . , t̄n · (1+ ϵn)}, (7)

where t̄i ∈ RD represents a vector that contains the mean values of D individual
descriptive features at time step i and is calculated as 1

n

∑n
k=1 tki with tki being

the value at time step i of k-th instance. The ϵi ∈ RD denotes a vector of random
noises, each of which is generated from a Gaussian distribution N (0, σ2) with
standard deviation σ being a parameter that controls the magnitude of noises to
be added, offering flexibility in the augmentation process. An example of MGN-
generated results for five physical parameters (i.e., descriptive features) from
SWAN-SF dataset is shown in Fig. 3.

0 20 40 600.5

0.4

0.3

0.2

0.1

0.0

0.1
TOTUSJH

0 20 40 60
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

TOTBSQ

0 20 40 60
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5

TOTPOT

0 20 40 60
2.0

1.5

1.0

0.5

0.0

TOTUSJZ

0 20 40 60
2.5

2.0

1.5

1.0

0.5

0.0

0.5

ABSNJZH

Fig. 3. Examples of Mean Gaussian Noise (MGN) applied to the common five features
[5] of the flaring data (i.e., extremely rare class) in Partition 1 from SWAN-SF. The
blue lines represent the mean time series and the dotted red lines are the generated time
series by MGN. The values on the y-axis for each feature are normalized to compare
with other methods (e.g., Fig. 1).

While jittering also generates synthetic data by adding Gaussian noise, it op-
erates directly on individual time series data instances. However, this approach
may limit the variability of data generation, potentially constraining exploration
in the input space and adding overlapped samples at the boarder between rare



8 Junzhi Wen and Rafal A. Angryk

and frequent classes. In contrast, MGN introduces more flexibility by allowing
greater randomness in data generation while preserving the overall underlying
distribution of the input dataset. Moreover, MGN adds noise proportionally
along with each feature dimension through t̄1 ·(1+ϵ1), which offers more control
over the scale and magnitude of the noise. We anticipate that MGN will enhance
coverage of the input space when mapping to the high-dimensional representa-
tions for ML training.

Similar to existing methods like jittering and scaling, MGN requires only one
parameter, the standard deviation σ of the Gaussian noise, to be configured.
However, MGN’s approach is advantageous for multivariate time series as it
does not necessitate feature normalization before augmentation. This flexibility
makes MGN a valuable addition to the toolkit of data augmentation techniques
for multivariate time series datasets.

4 Experiment Setup

In this study, we focus on investigating effectiveness of data augmentation tech-
niques for a task of binary classification for solar flare prediction using SWAN-
SF. Among the five classes in SWAN-SF, we categorize M and X as positive
class (referred to as MX) due to the heightened risk they pose to human so-
ciety. Conversely, the remaining three classes, N, B, and C, are grouped into
negative class (referred to as NBC). The actual imbalance ratios in our exper-
iments are shown in Tab. 1. To mitigate the curse of dimensionality, we focus
on the top five predictive SHARP parameters suggested in [5]: total unsigned
current heilicy (TOTUSJH), total magnitude of Lorentz force (TOTBSQ), total
photospheric magnetic free energy density (TOTPOT), total unsigned vertical
current (TOTUSJZ), and absolute value of the net current helicity (ABSNJZH).
Furthermore, we maintain consistency for different augmentation methods by
following the hyperparameter settings used in [10]. The standard deviation σ for
the MGN method is set to 1.0.

Leveraging the fact that SWAN-SF is split into five partitions without tem-
poral overlapping, we use Partition 1 for training and Partitions 2-5 for testing.
For each data augmentation method detailed in Section 2.1, we generate one
synthetic instance for each instance in MX class and combine them with the
original data, which doubles the training size. To ensure consistency in training
data size across all experiments, for our baseline, we duplicate the MX class once
to match the augmented data size. For MGN, we specify the number of samples
to generate as 1,254 (i.e., the count of MX class in Partition 1).

Random undersampling without replacement is applied to the NBC class,
where an equal number of NBC-class instances are randomly selected to balance
the training data. Consequently, the total training data comprises 2,508 instances
for both the MX and NBC classes accross all our experiments. To ensure the
reliability of our experiments, we repeat the random undersampling without
replacement process ten times, each time selecting different instances from NBC



Title Suppressed Due to Excessive Length 9

class. We utilize the mean and standard deviation of the evaluation metrics from
the ten runs to assess the final model performance.

The binary classifier employed in our experiment is TimeSeriesSVC from
tslearn library [17]. Tslearn is a Python machine learning tool specifically de-
signed for time series data and is build upon the Scikit-learn library [14], Numpy
[9], and SciPy [21]. TimeSeriesSVC extends the traditional Support Vector Ma-
chine (SVM) algorithm to effectively handle temporal dependencies and patterns
inherent in time series datasets. Similar to conventional SVM, TimeSeriesSVC
takes three hyperparameters: kernel function, kernel coefficient γ, and soft mar-
gin constant C. In our study, to ensure a fair evaluation, we consistently use
the radial basis function (RBF) kernel with γ = 0.01 and C = 1 to train the
classifier across all data augmentation methods.

Given the imbalanced nature of the testing data, traditional evaluation met-
rics such as accuracy may provide misleading insights [1]. To ensure a com-
prehensive evaluation of model performance, we rely on two widely-used [6, 22]
metrics in the space weather community: the true skill score (TSS) [4] and the
updated Heidke skill score (HSS2) [5]. TSS is calculated as:

TSS =
TP

TP + FN
− FP

FP + TN
, (8)

where TP, FP, TN, and FN represent true positives, false positives, true nega-
tives, and false negatives, respectively. TSS measures the difference between the
true positive rate (recall) and the false alarm rate, with values ranging from -1
to 1. A TSS score of 1 indicates perfect performance, while -1 suggests that all
predictions made by the classifier are reversed.

On the other hand, HSS2 emphasizes the model’s ability to make correct
positive predictions (TP) while minimizing false alarms (FP), and is calculated
as:

HSS2 =
2(TP · TN − FN · FP )

P (FN + TN) +N(TP + FP )
, (9)

where P and N represent the total number of positive and negative instances,
respectively (each 2,508 in all our experiments). Similar to TSS, HSS2 scores
range from -1 to 1, with 1 indicating a perfect model and -1 implying a rever-
sal of labels for all testing instances. By combining TSS and HSS2, we obtain
a comprehensive assessment of the model’s performance on imbalanced data,
considering both discrimination and reliability.

5 Results and Discussion

To visually compare the performance of our models based on the two evaluation
metrics, we plot the true skill score (TSS) against the updated Heidke skill score
(HSS2) for each testing partition 2-5 in Fig. 4. In each plot, moving toward the
top right corner reflects improving prediction performance, any points lying on
the same curve have a same distance from the coordinate (1,1) and are consid-
ered to have equivalent performance levels. From Fig. 4, we observe that MGN



10 Junzhi Wen and Rafal A. Angryk

Table 2. DtP of different data augmentation methods on each testing partition. Each
cell shows the mean and standard deviation (in the parenthesis) across ten runs of our
random undersampling experiments.

Augmentation Method Partition 2 Partition 3 Partition 4 Partition 5
Original/Baseline 0.852 (0.004) 0.790 (0.003) 0.796 (0.010) 0.825 (0.005)
Jittering 0.850 (0.003) 0.793 (0.011) 0.791 (0.002) 0.823 (0.004)
Scaling 0.847 (0.006) 0.790 (0.012) 0.789 (0.004) 0.821 (0.006)
Random Flipping 0.800 (0.007) 0.761 (0.007) 0.743 (0.009) 0.778 (0.004)
Permutation 0.853 (0.004) 0.793 (0.003) 0.797 (0.004) 0.829 (0.004)
Magnitude Warping 0.846 (0.010) 0.796 (0.024) 0.827 (0.050) 0.817 (0.008)
Time Warping 0.852 (0.004) 0.791 (0.003) 0.794 (0.003) 0.826 (0.005)
Slicing 0.852 (0.004) 0.791 (0.002) 0.797 (0.010) 0.826 (0.005)
Window Warping 0.852 (0.004) 0.790 (0.003) 0.797 (0.011) 0.825 (0.005)
Mean Gaussian Noise 0.767 (0.029) 0.763 (0.019) 0.719 (0.041) 0.743 (0.027)

and random flipping exhibit notably superior performance compared to other
evaluated augmentation techniques, while the remaining methods exhibit sim-
ilar performance to the baseline across all testing partitions. To quantitatively
assess the distance of each point from the perfect performance corner, we com-
pute the Euclidean distance, termed distance to the perfect (DtP), using the
formula:

DtP =
√
(1− TSS)2 + (1−HSS2)2. (10)

The DtP metric ranges from 0 to 2
√
2, where 0 denotes a perfect model and

2
√
2 signifies a classifier that assigns the opposite labels to all testing instances.

Tab.2 shows the mean and standard deviation (in the parentheses) of DtP for
different augmentation methods across ten runs of random undersampling. As il-
lustrated, MGN achieves the best performance on three testing partitions, while
preserving competitive performance with random flipping on the remaining par-
tition.

The primary concept of data augmentation is to generate synthetic data
to explore unexplored regions of the input space. However, most augmentation
methods tested in our study manipulate individual instances, potentially limiting
exploration in high-dimensional spaces. Random flipping, in contrast, flips the
time series of randomly selected features, which may help the generated data
cover more input space. MGN, from a different persepective, generates data
globally using the mean of the entire dataset’s time series, which may stimulate
the exploration in the input space as well. That may also be the reason why
MGN has greater variances than the other methods.

6 Run Time Experiments

In this section, we conduct an experimental time complexity investigation on
various augmentation methods. We generate different numbers of data for each
method based on the number of multiplications of the MX-class instances in
Partition 1 from SWAN-SF with the five parameters mentioned in Section 4. We



Title Suppressed Due to Excessive Length 11

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
TSS

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

HS
S2

Testing Partition 2
Jittering
Scaling
Random Flipping
Permutation
Magnitude Warping

Time Warping
Window Slicing
Window Warping
Original/Baseline
Mean Gaussian Noise

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
TSS

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

HS
S2

Testing Partition 3
Jittering
Scaling
Random Flipping
Permutation
Magnitude Warping

Time Warping
Window Slicing
Window Warping
Original/Baseline
Mean Gaussian Noise

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
TSS

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

HS
S2

Testing Partition 4
Jittering
Scaling
Random Flipping
Permutation
Magnitude Warping

Time Warping
Window Slicing
Window Warping
Original/Baseline
Mean Gaussian Noise

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
TSS

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

HS
S2

Testing Partition 5
Jittering
Scaling
Random Flipping
Permutation
Magnitude Warping

Time Warping
Window Slicing
Window Warping
Original/Baseline
Mean Gaussian Noise

Fig. 4. The result of comparison between different data augmentation methods. Each
dot represents the mean values of TSS and HSS2 of the ten runs of random undersam-
pling for the corresponding data augmentation method. Both axes are zoomed in to
enhance detail and improve visualization.

use a variable named Reps to represent the number of repetitions of MX-class
instances to generate. For instance, when Reps = 1, 1254 synthetic instances
will be generated. We test a set of Reps from 1 to 10 and run ten times for
each value. Subsequently, we take the average as the final running time for each
method. As depicted in Fig. 5, MGN emerges as competitive in the regards to
computational cost while yielding the best performance in terms of DtP.

7 Conclusion and Future Work

In this study, we introduce a novel approach termed Mean Gaussian Noise
(MGN), which generates synthetic data globally by utilizing the mean of the
entire dataset’s time series and involves only one pre-determined hyperparame-
ter. We conduct an experiment to compare MGN with various basic data aug-
mentation methods on a multivariate time series dataset, SWAN-SF, for solar
flare prediction. Our experimental results show that MGN exhibits better per-



12 Junzhi Wen and Rafal A. Angryk

2 4 6 8 10
Reps

0

2

4

6

8

Ti
m

e 
(s

)

(a)
Method

Jittering
Scaling
Random Flipping

Permutation
Magnitude Warping
Time Warping

Window Slicing
Window Warping
Mean Gaussian Noise

2 4 6 8 10
Reps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ti
m

e 
(s

)

(b)
Method

Jittering
Scaling

Random Flipping
Permutation

Mean Gaussian Noise

Fig. 5. Run time of different data augmentation methods. (a) shows the computational
cost of all nine different augmentation methods evaluated in this study. (b) provides a
close-up view of the five overlapping methods from (a) for enhanced clarity.

formance compared to other investigated methods. This may be attributed to
the increased randomness inherent in the method, which facilitates exploration
of the input space. Moreover, our run time experiments reveal that MGN op-
erate more efficiently than certain methods and remain competitive with the
others. Moving forward, our future research endeavors aim to extend the evalu-
ation of our methods across a broader range of multivariate time series datasets
and with diverse classifiers, including neural networks. Additionally, we aspire
to develop more advanced data augmentation techniques capable of generating
even more accurate synthetic data, with the goal of improving machine learning
for extremely imbalanced data.

Acknowledgement. This project is supported in part by funding from CISE,
MPS and GEO Directorates under NSF award #1931555, and by funding from
NASA, under awards #80NSSC23K1026 and #80NSSC24K0238.

References

1. Ahmadzadeh, A., Aydin, B., Georgoulis, M.K., Kempton, D.J., Mahajan, S.S.,
Angryk, R.A.: How to train your flare prediction model: Revisiting robust sampling
of rare events. The Astrophysical Journal Supplement Series 254(2), 23 (2021)

2. Angryk, R.A., Martens, P.C., Aydin, B., Kempton, D., Mahajan, S.S., Basodi, S.,
Ahmadzadeh, A., Cai, X., Filali Boubrahimi, S., Hamdi, S.M., et al.: Multivariate
time series dataset for space weather data analytics. Scientific data 7(1), 227
(2020)

3. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several meth-
ods for balancing machine learning training data. ACM SIGKDD explorations
newsletter 6(1), 20–29 (2004)

4. Bloomfield, D.S., Higgins, P.A., McAteer, R.J., Gallagher, P.T.: Toward reliable
benchmarking of solar flare forecasting methods. The Astrophysical Journal Letters
747(2), L41 (2012)

5. Bobra, M.G., Couvidat, S.: Solar flare prediction using sdo/hmi vector magnetic
field data with a machine-learning algorithm. The Astrophysical Journal 798(2),
135 (2015)



Title Suppressed Due to Excessive Length 13

6. Chen, Y., Kempton, D.J., Ahmadzadeh, A., Wen, J., Ji, A., Angryk, R.A.: Cgan-
based synthetic multivariate time-series generation: a solution to data scarcity in
solar flare forecasting. Neural Computing and Applications 34(16), 13339–13353
(2022)

7. Fields, T., Hsieh, G., Chenou, J.: Mitigating drift in time series data with noise
augmentation. In: 2019 International Conference on Computational Science and
Computational Intelligence (CSCI). pp. 227–230. IEEE (2019)

8. Gao, Y., Lewis, N., Calhoun, V.D., Miller, R.L.: Interpretable lstm model reveals
transiently-realized patterns of dynamic brain connectivity that predict patient de-
terioration or recovery from very mild cognitive impairment. Computers in Biology
and Medicine 161, 107005 (2023)

9. Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al.: Array programming
with numpy. Nature 585(7825), 357–362 (2020)

10. Iwana, B.K., Uchida, S.: An empirical survey of data augmentation for time series
classification with neural networks. Plos one 16(7), e0254841 (2021)

11. Le Guennec, A., Malinowski, S., Tavenard, R.: Data augmentation for time series
classification using convolutional neural networks. In: ECML/PKDD workshop on
advanced analytics and learning on temporal data (2016)

12. Mehdiyev, N., Lahann, J., Emrich, A., Enke, D., Fettke, P., Loos, P.: Time series
classification using deep learning for process planning: A case from the process
industry. Procedia Computer Science 114, 242–249 (2017)

13. Mudelsee, M.: Trend analysis of climate time series: A review of methods. Earth-
science reviews 190, 310–322 (2019)

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825–2830 (2011)

15. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. Journal of big data 6(1), 1–48 (2019)

16. Shorten, C., Khoshgoftaar, T.M., Furht, B.: Text data augmentation for deep learn-
ing. Journal of big Data 8(1), 101 (2021)

17. Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne,
M., Yurchak, R., Rußwurm, M., Kolar, K., et al.: Tslearn, a machine learning
toolkit for time series data. Journal of machine learning research 21(118), 1–6
(2020)

18. Tran, L., Choi, D.: Data augmentation for inertial sensor-based gait deep neural
network. IEEE Access 8, 12364–12378 (2020)

19. Tsay, R.S.: Analysis of financial time series. John wiley & sons (2005)
20. Um, T.T., Pfister, F.M., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U.,

Kulić, D.: Data augmentation of wearable sensor data for parkinson’s disease mon-
itoring using convolutional neural networks. In: Proceedings of the 19th ACM
international conference on multimodal interaction. pp. 216–220 (2017)

21. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods 17(3),
261–272 (2020)

22. Wen, J., Islam, M.R., Ahmadzadeh, A., Angryk, R.A.: Improving solar flare pre-
diction by time series outlier detection. In: International Conference on Artificial
Intelligence and Soft Computing. pp. 152–164. Springer (2022)


	Class-Based Time Series Data Augmentation to Mitigate Extreme Class Imbalance for Solar Flare Prediction

